Abstract:Infrared small targets are typically tiny and locally salient, which belong to high-frequency components (HFCs) in images. Single-frame infrared small target (SIRST) detection is challenging, since there are many HFCs along with targets, such as bright corners, broken clouds, and other clutters. Current learning-based methods rely on the powerful capabilities of deep networks, but neglect explicit modeling and discriminative representation learning of various HFCs, which is important to distinguish targets from other HFCs. To address the aforementioned issues, we propose a dynamic high-frequency convolution (DHiF) to translate the discriminative modeling process into the generation of a dynamic local filter bank. Especially, DHiF is sensitive to HFCs, owing to the dynamic parameters of its generated filters being symmetrically adjusted within a zero-centered range according to Fourier transformation properties. Combining with standard convolution operations, DHiF can adaptively and dynamically process different HFC regions and capture their distinctive grayscale variation characteristics for discriminative representation learning. DHiF functions as a drop-in replacement for standard convolution and can be used in arbitrary SIRST detection networks without significant decrease in computational efficiency. To validate the effectiveness of our DHiF, we conducted extensive experiments across different SIRST detection networks on real-scene datasets. Compared to other state-of-the-art convolution operations, DHiF exhibits superior detection performance with promising improvement. Codes are available at https://github.com/TinaLRJ/DHiF.
Abstract:Large language models (LLMs) increasingly serve as automated judges, yet they remain susceptible to cognitive biases -- often altering their reasoning when faced with spurious prompt-level cues such as consensus claims or authority appeals. Existing mitigations via prompting or supervised fine-tuning fail to generalize, as they modify surface behavior without changing the optimization objective that makes bias cues predictive. To address this gap, we propose Epistemic Independence Training (EIT), a reinforcement learning framework grounded in a key principle: to learn independence, bias cues must be made non-predictive of reward. EIT operationalizes this through a balanced conflict strategy where bias signals are equally likely to support correct and incorrect answers, combined with a reward design that penalizes bias-following without rewarding bias agreement. Experiments on Qwen3-4B demonstrate that EIT improves both accuracy and robustness under adversarial biases, while preserving performance when bias aligns with truth. Notably, models trained only on bandwagon bias generalize to unseen bias types such as authority and distraction, indicating that EIT induces transferable epistemic independence rather than bias-specific heuristics. Code and data are available at https://anonymous.4open.science/r/bias-mitigation-with-rl-BC47.
Abstract:Prevailing medical AI operates on an unrealistic ''one-shot'' model, diagnosing from a complete patient file. However, real-world diagnosis is an iterative inquiry where Clinicians sequentially ask questions and order tests to strategically gather information while managing cost and time. To address this, we first propose Med-Inquire, a new benchmark designed to evaluate an agent's ability to perform multi-turn diagnosis. Built upon a dataset of real-world clinical cases, Med-Inquire simulates the diagnostic process by hiding a complete patient file behind specialized Patient and Examination agents. They force the agent to proactively ask questions and order tests to gather information piece by piece. To tackle the challenges posed by Med-Inquire, we then introduce EvoClinician, a self-evolving agent that learns efficient diagnostic strategies at test time. Its core is a ''Diagnose-Grade-Evolve'' loop: an Actor agent attempts a diagnosis; a Process Grader agent performs credit assignment by evaluating each action for both clinical yield and resource efficiency; finally, an Evolver agent uses this feedback to update the Actor's strategy by evolving its prompt and memory. Our experiments show EvoClinician outperforms continual learning baselines and other self-evolving agents like memory agents. The code is available at https://github.com/yf-he/EvoClinician
Abstract:Although generative recommenders demonstrate improved performance with longer sequences, their real-time deployment is hindered by substantial computational costs. To address this challenge, we propose a simple yet effective method for compressing long-term user histories by leveraging inherent item categorical features, thereby preserving user interests while enhancing efficiency. Experiments on two large-scale datasets demonstrate that, compared to the influential HSTU model, our approach achieves up to a 6x reduction in computational cost and up to 39% higher accuracy at comparable cost (i.e., similar sequence length).
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective in enhancing LLMs short-context reasoning, but its performance degrades in long-context scenarios that require both precise grounding and robust long-range reasoning. We identify the "almost-there" phenomenon in long-context reasoning, where trajectories are largely correct but fail at the final step, and attribute this failure to two factors: (1) the lack of high reasoning density in long-context QA data that push LLMs beyond mere grounding toward sophisticated multi-hop reasoning; and (2) the loss of valuable learning signals during long-context RL training due to the indiscriminate penalization of partially correct trajectories with incorrect outcomes. To overcome this bottleneck, we propose DeepReasonQA, a KG-driven synthesis framework that controllably constructs high-difficulty, multi-hop long-context QA pairs with inherent reasoning chains. Building on this, we introduce Long-context Process Advantage Shaping (LongPAS), a simple yet effective method that performs fine-grained credit assignment by evaluating reasoning steps along Validity and Relevance dimensions, which captures critical learning signals from "almost-there" trajectories. Experiments on three long-context reasoning benchmarks show that our approach substantially outperforms RLVR baselines and matches frontier LLMs while using far fewer parameters. Further analysis confirms the effectiveness of our methods in strengthening long-context reasoning while maintaining stable RL training.
Abstract:We present MiMo-V2-Flash, a Mixture-of-Experts (MoE) model with 309B total parameters and 15B active parameters, designed for fast, strong reasoning and agentic capabilities. MiMo-V2-Flash adopts a hybrid attention architecture that interleaves Sliding Window Attention (SWA) with global attention, with a 128-token sliding window under a 5:1 hybrid ratio. The model is pre-trained on 27 trillion tokens with Multi-Token Prediction (MTP), employing a native 32k context length and subsequently extended to 256k. To efficiently scale post-training compute, MiMo-V2-Flash introduces a novel Multi-Teacher On-Policy Distillation (MOPD) paradigm. In this framework, domain-specialized teachers (e.g., trained via large-scale reinforcement learning) provide dense and token-level reward, enabling the student model to perfectly master teacher expertise. MiMo-V2-Flash rivals top-tier open-weight models such as DeepSeek-V3.2 and Kimi-K2, despite using only 1/2 and 1/3 of their total parameters, respectively. During inference, by repurposing MTP as a draft model for speculative decoding, MiMo-V2-Flash achieves up to 3.6 acceptance length and 2.6x decoding speedup with three MTP layers. We open-source both the model weights and the three-layer MTP weights to foster open research and community collaboration.
Abstract:Reasoning ability has become a central focus in the advancement of Large Reasoning Models (LRMs). Although notable progress has been achieved on several reasoning benchmarks such as MATH500 and LiveCodeBench, existing benchmarks for algorithmic reasoning remain limited, failing to answer a critical question: Do LRMs truly master algorithmic reasoning? To answer this question, we propose AlgBench, an expert-curated benchmark that evaluates LRMs under an algorithm-centric paradigm. AlgBench consists of over 3,000 original problems spanning 27 algorithms, constructed by ACM algorithmic experts and organized under a comprehensive taxonomy, including Euclidean-structured, non-Euclidean-structured, non-optimized, local-optimized, global-optimized, and heuristic-optimized categories. Empirical evaluations on leading LRMs (e.g., Gemini-3-Pro, DeepSeek-v3.2-Speciale and GPT-o3) reveal substantial performance heterogeneity: while models perform well on non-optimized tasks (up to 92%), accuracy drops sharply to around 49% on globally optimized algorithms such as dynamic programming. Further analysis uncovers \textbf{strategic over-shifts}, wherein models prematurely abandon correct algorithmic designs due to necessary low-entropy tokens. These findings expose fundamental limitations of problem-centric reinforcement learning and highlight the necessity of an algorithm-centric training paradigm for robust algorithmic reasoning.
Abstract:Large language models (LLMs) have achieved strong performance on code completion tasks in general-purpose programming languages. However, existing repository-level code completion benchmarks focus almost exclusively on software code and largely overlook hardware description languages. In this work, we present \textbf{MHRC-Bench}, consisting of \textbf{MHRC-Bench-Train} and \textbf{MHRC-Bench-Eval}, the first benchmark designed for multilingual hardware code completion at the repository level. Our benchmark targets completion tasks and covers three major hardware design coding styles. Each completion target is annotated with code-structure-level and hardware-oriented semantic labels derived from concrete syntax tree analysis. We conduct a comprehensive evaluation of models on MHRC-Bench-Eval. Comprehensive evaluation results and analysis demonstrate the effectiveness of MHRC-Bench.
Abstract:Recent studies have shown that prompting can enable large language models (LLMs) to simulate specific personality traits and produce behaviors that align with those traits. However, there is limited understanding of how these simulated personalities influence critical web search decisions, specifically relevance assessment. Moreover, few studies have examined how simulated personalities impact confidence calibration, specifically the tendencies toward overconfidence or underconfidence. This gap exists even though psychological literature suggests these biases are trait-specific, often linking high extraversion to overconfidence and high neuroticism to underconfidence. To address this gap, we conducted a comprehensive study evaluating multiple LLMs, including commercial models and open-source models, prompted to simulate Big Five personality traits. We tested these models across three test collections (TREC DL 2019, TREC DL 2020, and LLMJudge), collecting two key outputs for each query-document pair: a relevance judgment and a self-reported confidence score. The findings show that personalities such as low agreeableness consistently align more closely with human labels than the unprompted condition. Additionally, low conscientiousness performs well in balancing the suppression of both overconfidence and underconfidence. We also observe that relevance scores and confidence distributions vary systematically across different personalities. Based on the above findings, we incorporate personality-conditioned scores and confidence as features in a random forest classifier. This approach achieves performance that surpasses the best single-personality condition on a new dataset (TREC DL 2021), even with limited training data. These findings highlight that personality-derived confidence offers a complementary predictive signal, paving the way for more reliable and human-aligned LLM evaluators.
Abstract:Existing audio language models typically rely on task-specific fine-tuning to accomplish particular audio tasks. In contrast, humans are able to generalize to new audio tasks with only a few examples or simple instructions. GPT-3 has shown that scaling next-token prediction pretraining enables strong generalization capabilities in text, and we believe this paradigm is equally applicable to the audio domain. By scaling MiMo-Audio's pretraining data to over one hundred million of hours, we observe the emergence of few-shot learning capabilities across a diverse set of audio tasks. We develop a systematic evaluation of these capabilities and find that MiMo-Audio-7B-Base achieves SOTA performance on both speech intelligence and audio understanding benchmarks among open-source models. Beyond standard metrics, MiMo-Audio-7B-Base generalizes to tasks absent from its training data, such as voice conversion, style transfer, and speech editing. MiMo-Audio-7B-Base also demonstrates powerful speech continuation capabilities, capable of generating highly realistic talk shows, recitations, livestreaming and debates. At the post-training stage, we curate a diverse instruction-tuning corpus and introduce thinking mechanisms into both audio understanding and generation. MiMo-Audio-7B-Instruct achieves open-source SOTA on audio understanding benchmarks (MMSU, MMAU, MMAR, MMAU-Pro), spoken dialogue benchmarks (Big Bench Audio, MultiChallenge Audio) and instruct-TTS evaluations, approaching or surpassing closed-source models. Model checkpoints and full evaluation suite are available at https://github.com/XiaomiMiMo/MiMo-Audio.